Why developers need security skills to effectively navigate AI development tools

Artificial intelligence engines are starting to populate everywhere, with each new model and version seemingly bringing forth more powerful and impressive capabilities that can be applied in a variety of fields. One area that has been suggested as a good possible use case for AI is writing code, and some models have already proven their abilities using a multitude of programming languages.
However, the premise that AI could take over the jobs of human software engineers is overstated. All of the top AI models operating today have demonstrated critical limitations when it comes to their advanced programming prowess, not the least of which is their tendency to introduce errors and vulnerabilities into the code they compile at cracking speed.
While it’s true that the use of AI can help save some time for overworked programmers, the future will likely be one where humans and AI work together, with talented personnel entirely in charge of applying critical thinking and precision skills that ensure all code is as secure as possible. As such, the ability to write secure code, spot vulnerabilities, and establish that applications are as protected as possible long before they ever enter a production environment is vital.
In this new white paper from Secure Code Warrior, you will learn:
- The pitfalls of blind trust in LLM code output.
- Why security-skilled developers are key to safely “pair programming” with AI coding tools.
- The best strategies to upskill the development cohort in the age of AI-assisted programming.
- An interactive challenge to showcase AI limitations (and how you can navigate them).


The promise of artificial intelligence writing complex code at the touch of a button is intriguing, but the reality is that AI will need a lot of help from human developers to craft truly secure and reliable code.

Secure Code Warrior is here for your organization to help you secure code across the entire software development lifecycle and create a culture in which cybersecurity is top of mind. Whether you’re an AppSec Manager, Developer, CISO, or anyone involved in security, we can help your organization reduce risks associated with insecure code.
Book a demo


Artificial intelligence engines are starting to populate everywhere, with each new model and version seemingly bringing forth more powerful and impressive capabilities that can be applied in a variety of fields. One area that has been suggested as a good possible use case for AI is writing code, and some models have already proven their abilities using a multitude of programming languages.
However, the premise that AI could take over the jobs of human software engineers is overstated. All of the top AI models operating today have demonstrated critical limitations when it comes to their advanced programming prowess, not the least of which is their tendency to introduce errors and vulnerabilities into the code they compile at cracking speed.
While it’s true that the use of AI can help save some time for overworked programmers, the future will likely be one where humans and AI work together, with talented personnel entirely in charge of applying critical thinking and precision skills that ensure all code is as secure as possible. As such, the ability to write secure code, spot vulnerabilities, and establish that applications are as protected as possible long before they ever enter a production environment is vital.
In this new white paper from Secure Code Warrior, you will learn:
- The pitfalls of blind trust in LLM code output.
- Why security-skilled developers are key to safely “pair programming” with AI coding tools.
- The best strategies to upskill the development cohort in the age of AI-assisted programming.
- An interactive challenge to showcase AI limitations (and how you can navigate them).


Artificial intelligence engines are starting to populate everywhere, with each new model and version seemingly bringing forth more powerful and impressive capabilities that can be applied in a variety of fields. One area that has been suggested as a good possible use case for AI is writing code, and some models have already proven their abilities using a multitude of programming languages.
However, the premise that AI could take over the jobs of human software engineers is overstated. All of the top AI models operating today have demonstrated critical limitations when it comes to their advanced programming prowess, not the least of which is their tendency to introduce errors and vulnerabilities into the code they compile at cracking speed.
While it’s true that the use of AI can help save some time for overworked programmers, the future will likely be one where humans and AI work together, with talented personnel entirely in charge of applying critical thinking and precision skills that ensure all code is as secure as possible. As such, the ability to write secure code, spot vulnerabilities, and establish that applications are as protected as possible long before they ever enter a production environment is vital.
In this new white paper from Secure Code Warrior, you will learn:
- The pitfalls of blind trust in LLM code output.
- Why security-skilled developers are key to safely “pair programming” with AI coding tools.
- The best strategies to upskill the development cohort in the age of AI-assisted programming.
- An interactive challenge to showcase AI limitations (and how you can navigate them).

Click on the link below and download the PDF of this resource.
Secure Code Warrior is here for your organization to help you secure code across the entire software development lifecycle and create a culture in which cybersecurity is top of mind. Whether you’re an AppSec Manager, Developer, CISO, or anyone involved in security, we can help your organization reduce risks associated with insecure code.
View reportBook a demo
Artificial intelligence engines are starting to populate everywhere, with each new model and version seemingly bringing forth more powerful and impressive capabilities that can be applied in a variety of fields. One area that has been suggested as a good possible use case for AI is writing code, and some models have already proven their abilities using a multitude of programming languages.
However, the premise that AI could take over the jobs of human software engineers is overstated. All of the top AI models operating today have demonstrated critical limitations when it comes to their advanced programming prowess, not the least of which is their tendency to introduce errors and vulnerabilities into the code they compile at cracking speed.
While it’s true that the use of AI can help save some time for overworked programmers, the future will likely be one where humans and AI work together, with talented personnel entirely in charge of applying critical thinking and precision skills that ensure all code is as secure as possible. As such, the ability to write secure code, spot vulnerabilities, and establish that applications are as protected as possible long before they ever enter a production environment is vital.
In this new white paper from Secure Code Warrior, you will learn:
- The pitfalls of blind trust in LLM code output.
- Why security-skilled developers are key to safely “pair programming” with AI coding tools.
- The best strategies to upskill the development cohort in the age of AI-assisted programming.
- An interactive challenge to showcase AI limitations (and how you can navigate them).
Table of contents

Secure Code Warrior is here for your organization to help you secure code across the entire software development lifecycle and create a culture in which cybersecurity is top of mind. Whether you’re an AppSec Manager, Developer, CISO, or anyone involved in security, we can help your organization reduce risks associated with insecure code.
Book a demoDownloadResources to get you started
Secure code training topics & content
Our industry-leading content is always evolving to fit the ever changing software development landscape with your role in mind. Topics covering everything from AI to XQuery Injection, offered for a variety of roles from Architects and Engineers to Product Managers and QA. Get a sneak peak of what our content catalog has to offer by topic and role.
Quests: Industry leading learning to keep developers ahead of the game mitigating risk.
Quests is a learning platform that helps developers mitigate software security risks by enhancing their secure coding skills. With curated learning paths, hands-on challenges, and interactive activities, it empowers developers to identify and prevent vulnerabilities.
Resources to get you started
The Decade of the Defenders: Secure Code Warrior Turns Ten
Secure Code Warrior's founding team has stayed together, steering the ship through every lesson, triumph, and setback for an entire decade. We’re scaling up and ready to face our next chapter, SCW 2.0, as the leaders in developer risk management.
10 Key Predictions: Secure Code Warrior on AI & Secure-by-Design’s Influence in 2025
Organizations are facing tough decisions on AI usage to support long-term productivity, sustainability, and security ROI. It’s become clear to us over the last few years that AI will never fully replace the role of the developer. From AI + developer partnerships to the increasing pressures (and confusion) around Secure-by-Design expectations, let’s take a closer look at what we can expect over the next year.
OWASP Top 10 For LLM Applications: What’s New, Changed, and How to Stay Secure
Stay ahead in securing LLM applications with the latest OWASP Top 10 updates. Discover what's new, what’s changed, and how Secure Code Warrior equips you with up-to-date learning resources to mitigate risks in Generative AI.