Understand the path traversal bug in Python’s tarfile module
Recently, a team of security researchers announced their finding of a fifteen year old bug in Python’s tar file extraction functionality. The vulnerability was first disclosed in 2007 and tracked as CVE-2007-4559. A note was added to the official Python documentation, but the bug itself was left unpatched.
This vulnerability could impact thousands of software projects yet many people are unfamiliar with the situation or how to handle it. That’s why, here at Secure Code Warrior, we’re giving you the opportunity to simulate exploiting this vulnerability yourself to see the impact first-hand and get some hands-on experience in the mechanics of this persistent bug, so you can better protect your application!
Try the simulated Mission now.
The vulnerability: path traversal during tar file extraction
Path or directory traversal happens when unsanitized user input is used to construct a file path, allowing an attacker to gain access to and overwrite files, and even execute arbitrary code.
The vulnerability exists in Python’s tarfile module. A tar (tape archive) file is a single file, called an archive. It packages together multiple files along with their metadata, and is usually recognized by having the .tar.gz or .tgz extension. Each member in the archive can be represented by a TarInfo object, which contains metadata, such as the file name, modification time, ownership, and more.
The risk arrises from the archives ability to be extracted again.
When being extracted, every member needs a path to be written to. This location is created by joining the base path with the file name:

Once this path is created, it’s passed on to the tarfile.extract or tarfile.extractall functions to perform the extraction:

The issue here is the lack of sanitization of the filename. An attacker could rename files to include path traversal characters, such as dot dot slash (../), which would cause the file to traverse out of the directory it was meant to be in and overwrite arbitrary files. This could eventually lead to remote code execution, which is ripe for exploitation.
The vulnerability appears throughout other scenarios, if you know how to identify it. In addition to Python’s handling of tar files, the vulnerability exists in the extraction of zip files. You may be familiar with this under another name, such as the zip slip vulnerability, which has manifested itself in languages other than Python!
How can you mitigate risk?
Despite the vulnerability being known for years, the Python maintainers consider the extraction functionality to be doing what it’s supposed to do. In this case, some may say “it’s a feature, not a bug.” Unfortunately, developers can’t always avoid extracting tar or zip files from an unknown source. It’s up to them to sanitize the untrusted input to prevent path traversal vulnerabilities as part of secure development practices.
Want to learn more about how to write secure code and mitigate risk with Python?
Try out our Python challenge for free.
If you’re interested in getting more free coding guidelines, check out Secure Code Coach to help you stay on top of secure coding practices.


Recently, a team of security researchers announced their finding of a fifteen year old bug in Python’s tar file extraction functionality. The vulnerability was first disclosed in 2007 and tracked as CVE-2007-4559. A note was added to the official Python documentation, but the bug itself was left unpatched.

Secure Code Warrior is here for your organization to help you secure code across the entire software development lifecycle and create a culture in which cybersecurity is top of mind. Whether you’re an AppSec Manager, Developer, CISO, or anyone involved in security, we can help your organization reduce risks associated with insecure code.
Book a demoLaura Verheyde is a software developer at Secure Code Warrior focused on researching vulnerabilities and creating content for Missions and Coding labs.


Recently, a team of security researchers announced their finding of a fifteen year old bug in Python’s tar file extraction functionality. The vulnerability was first disclosed in 2007 and tracked as CVE-2007-4559. A note was added to the official Python documentation, but the bug itself was left unpatched.
This vulnerability could impact thousands of software projects yet many people are unfamiliar with the situation or how to handle it. That’s why, here at Secure Code Warrior, we’re giving you the opportunity to simulate exploiting this vulnerability yourself to see the impact first-hand and get some hands-on experience in the mechanics of this persistent bug, so you can better protect your application!
Try the simulated Mission now.
The vulnerability: path traversal during tar file extraction
Path or directory traversal happens when unsanitized user input is used to construct a file path, allowing an attacker to gain access to and overwrite files, and even execute arbitrary code.
The vulnerability exists in Python’s tarfile module. A tar (tape archive) file is a single file, called an archive. It packages together multiple files along with their metadata, and is usually recognized by having the .tar.gz or .tgz extension. Each member in the archive can be represented by a TarInfo object, which contains metadata, such as the file name, modification time, ownership, and more.
The risk arrises from the archives ability to be extracted again.
When being extracted, every member needs a path to be written to. This location is created by joining the base path with the file name:

Once this path is created, it’s passed on to the tarfile.extract or tarfile.extractall functions to perform the extraction:

The issue here is the lack of sanitization of the filename. An attacker could rename files to include path traversal characters, such as dot dot slash (../), which would cause the file to traverse out of the directory it was meant to be in and overwrite arbitrary files. This could eventually lead to remote code execution, which is ripe for exploitation.
The vulnerability appears throughout other scenarios, if you know how to identify it. In addition to Python’s handling of tar files, the vulnerability exists in the extraction of zip files. You may be familiar with this under another name, such as the zip slip vulnerability, which has manifested itself in languages other than Python!
How can you mitigate risk?
Despite the vulnerability being known for years, the Python maintainers consider the extraction functionality to be doing what it’s supposed to do. In this case, some may say “it’s a feature, not a bug.” Unfortunately, developers can’t always avoid extracting tar or zip files from an unknown source. It’s up to them to sanitize the untrusted input to prevent path traversal vulnerabilities as part of secure development practices.
Want to learn more about how to write secure code and mitigate risk with Python?
Try out our Python challenge for free.
If you’re interested in getting more free coding guidelines, check out Secure Code Coach to help you stay on top of secure coding practices.

Recently, a team of security researchers announced their finding of a fifteen year old bug in Python’s tar file extraction functionality. The vulnerability was first disclosed in 2007 and tracked as CVE-2007-4559. A note was added to the official Python documentation, but the bug itself was left unpatched.
This vulnerability could impact thousands of software projects yet many people are unfamiliar with the situation or how to handle it. That’s why, here at Secure Code Warrior, we’re giving you the opportunity to simulate exploiting this vulnerability yourself to see the impact first-hand and get some hands-on experience in the mechanics of this persistent bug, so you can better protect your application!
Try the simulated Mission now.
The vulnerability: path traversal during tar file extraction
Path or directory traversal happens when unsanitized user input is used to construct a file path, allowing an attacker to gain access to and overwrite files, and even execute arbitrary code.
The vulnerability exists in Python’s tarfile module. A tar (tape archive) file is a single file, called an archive. It packages together multiple files along with their metadata, and is usually recognized by having the .tar.gz or .tgz extension. Each member in the archive can be represented by a TarInfo object, which contains metadata, such as the file name, modification time, ownership, and more.
The risk arrises from the archives ability to be extracted again.
When being extracted, every member needs a path to be written to. This location is created by joining the base path with the file name:

Once this path is created, it’s passed on to the tarfile.extract or tarfile.extractall functions to perform the extraction:

The issue here is the lack of sanitization of the filename. An attacker could rename files to include path traversal characters, such as dot dot slash (../), which would cause the file to traverse out of the directory it was meant to be in and overwrite arbitrary files. This could eventually lead to remote code execution, which is ripe for exploitation.
The vulnerability appears throughout other scenarios, if you know how to identify it. In addition to Python’s handling of tar files, the vulnerability exists in the extraction of zip files. You may be familiar with this under another name, such as the zip slip vulnerability, which has manifested itself in languages other than Python!
How can you mitigate risk?
Despite the vulnerability being known for years, the Python maintainers consider the extraction functionality to be doing what it’s supposed to do. In this case, some may say “it’s a feature, not a bug.” Unfortunately, developers can’t always avoid extracting tar or zip files from an unknown source. It’s up to them to sanitize the untrusted input to prevent path traversal vulnerabilities as part of secure development practices.
Want to learn more about how to write secure code and mitigate risk with Python?
Try out our Python challenge for free.
If you’re interested in getting more free coding guidelines, check out Secure Code Coach to help you stay on top of secure coding practices.

Click on the link below and download the PDF of this resource.
Secure Code Warrior is here for your organization to help you secure code across the entire software development lifecycle and create a culture in which cybersecurity is top of mind. Whether you’re an AppSec Manager, Developer, CISO, or anyone involved in security, we can help your organization reduce risks associated with insecure code.
View reportBook a demoLaura Verheyde is a software developer at Secure Code Warrior focused on researching vulnerabilities and creating content for Missions and Coding labs.
Recently, a team of security researchers announced their finding of a fifteen year old bug in Python’s tar file extraction functionality. The vulnerability was first disclosed in 2007 and tracked as CVE-2007-4559. A note was added to the official Python documentation, but the bug itself was left unpatched.
This vulnerability could impact thousands of software projects yet many people are unfamiliar with the situation or how to handle it. That’s why, here at Secure Code Warrior, we’re giving you the opportunity to simulate exploiting this vulnerability yourself to see the impact first-hand and get some hands-on experience in the mechanics of this persistent bug, so you can better protect your application!
Try the simulated Mission now.
The vulnerability: path traversal during tar file extraction
Path or directory traversal happens when unsanitized user input is used to construct a file path, allowing an attacker to gain access to and overwrite files, and even execute arbitrary code.
The vulnerability exists in Python’s tarfile module. A tar (tape archive) file is a single file, called an archive. It packages together multiple files along with their metadata, and is usually recognized by having the .tar.gz or .tgz extension. Each member in the archive can be represented by a TarInfo object, which contains metadata, such as the file name, modification time, ownership, and more.
The risk arrises from the archives ability to be extracted again.
When being extracted, every member needs a path to be written to. This location is created by joining the base path with the file name:

Once this path is created, it’s passed on to the tarfile.extract or tarfile.extractall functions to perform the extraction:

The issue here is the lack of sanitization of the filename. An attacker could rename files to include path traversal characters, such as dot dot slash (../), which would cause the file to traverse out of the directory it was meant to be in and overwrite arbitrary files. This could eventually lead to remote code execution, which is ripe for exploitation.
The vulnerability appears throughout other scenarios, if you know how to identify it. In addition to Python’s handling of tar files, the vulnerability exists in the extraction of zip files. You may be familiar with this under another name, such as the zip slip vulnerability, which has manifested itself in languages other than Python!
How can you mitigate risk?
Despite the vulnerability being known for years, the Python maintainers consider the extraction functionality to be doing what it’s supposed to do. In this case, some may say “it’s a feature, not a bug.” Unfortunately, developers can’t always avoid extracting tar or zip files from an unknown source. It’s up to them to sanitize the untrusted input to prevent path traversal vulnerabilities as part of secure development practices.
Want to learn more about how to write secure code and mitigate risk with Python?
Try out our Python challenge for free.
If you’re interested in getting more free coding guidelines, check out Secure Code Coach to help you stay on top of secure coding practices.
Table of contents

Secure Code Warrior is here for your organization to help you secure code across the entire software development lifecycle and create a culture in which cybersecurity is top of mind. Whether you’re an AppSec Manager, Developer, CISO, or anyone involved in security, we can help your organization reduce risks associated with insecure code.
Book a demoDownloadResources to get you started
Secure code training topics & content
Our industry-leading content is always evolving to fit the ever changing software development landscape with your role in mind. Topics covering everything from AI to XQuery Injection, offered for a variety of roles from Architects and Engineers to Product Managers and QA. Get a sneak peak of what our content catalog has to offer by topic and role.
Quests: Industry leading learning to keep developers ahead of the game mitigating risk.
Quests is a learning platform that helps developers mitigate software security risks by enhancing their secure coding skills. With curated learning paths, hands-on challenges, and interactive activities, it empowers developers to identify and prevent vulnerabilities.
Resources to get you started
The Decade of the Defenders: Secure Code Warrior Turns Ten
Secure Code Warrior's founding team has stayed together, steering the ship through every lesson, triumph, and setback for an entire decade. We’re scaling up and ready to face our next chapter, SCW 2.0, as the leaders in developer risk management.
10 Key Predictions: Secure Code Warrior on AI & Secure-by-Design’s Influence in 2025
Organizations are facing tough decisions on AI usage to support long-term productivity, sustainability, and security ROI. It’s become clear to us over the last few years that AI will never fully replace the role of the developer. From AI + developer partnerships to the increasing pressures (and confusion) around Secure-by-Design expectations, let’s take a closer look at what we can expect over the next year.